Benutzer-Werkzeuge

Webseiten-Werkzeuge


baulich:details_der_messung_der_wand-querschnitts-temperaturen

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste ÜberarbeitungBeide Seiten der Revision
baulich:details_der_messung_der_wand-querschnitts-temperaturen [2024/05/06 11:30] wfeistbaulich:details_der_messung_der_wand-querschnitts-temperaturen [2024/05/06 11:42] – [(2) Vorgänge an der Außenoberfläche] wfeist
Zeile 21: Zeile 21:
 Die Ergebnisse der Simulationsrechnung sind bereits im gleichen Diagramm mit eingezeichnet: Es sind die durchgezogenen schwarzen Linien, die sich fast ununterscheidbar mit den Symbolen aus der Messaufzeichnung decken. Nun, da die Aufmerksamkeit darauf gelenkt ist, lässt sich z.B. bei der Kurve mit den gelben Dreiecken zeitweise eine geringfügige Abweichung zwischen der Simulationskurve und den Messwerten erkennen: am 12. Oktober zwischen 13:00 und 18:00 liegen die Werte der Simulation z.B. wenige Zehntel Grad über den Messwerten in der Wand. Wenn spekuliert werden soll, worin diese kleine Abweichung vielleicht begründet ist: Dafür gibt es eine große Zahl von Möglichkeiten, zwischen denen ohne nähere Untersuchung nicht entscheiden werden kann: Recht wahrscheinlich ist, dass die Wärmekapazität in der Dämmschicht am Ort des Sensors anders((nämlich etwas höher)) ist, als in der Simulation angesetzt: der Sensor selbst hat eine gewisse Wärmekapazität und er wurde zwischen zwei Dämmplatten mit Mörtel eingeklebt; wir wissen nicht, wieviel Mörtel das genau war - und der erkennbare Effekt ist auch so gering, dass durch die mangelnde Detailerhebung keine Aufsehens erregenden Abweichungen resultieren. Es kann aber auch sein, dass sich der Sensor effektiv einfach ein paar Millimeter weiter außen befindet als im Modell angesetzt: Änderungen der kapillar aufgenommenen Wärme könnten eine Rolle spielen oder auch kleine Wassermengen in Phasenübergängen. Was auch immer die Abweichung verursacht - der Effekt ist so klein, dass wir recht daran taten, das einfache thermische Modell zu verwenden, wie es ober beschrieben wurde. Die Diskussion hier zeigt dann, dass die Fourier-Gleichung die Wärmestrom- und Temperurentwicklung in diesem Aufbau auch in allen Details ziemlich genau widerspiegelt. Die Untersuchung bestätigt damit die Validität der in der Bauphysik eingeführten Gleichungen.\\ \\  Die Ergebnisse der Simulationsrechnung sind bereits im gleichen Diagramm mit eingezeichnet: Es sind die durchgezogenen schwarzen Linien, die sich fast ununterscheidbar mit den Symbolen aus der Messaufzeichnung decken. Nun, da die Aufmerksamkeit darauf gelenkt ist, lässt sich z.B. bei der Kurve mit den gelben Dreiecken zeitweise eine geringfügige Abweichung zwischen der Simulationskurve und den Messwerten erkennen: am 12. Oktober zwischen 13:00 und 18:00 liegen die Werte der Simulation z.B. wenige Zehntel Grad über den Messwerten in der Wand. Wenn spekuliert werden soll, worin diese kleine Abweichung vielleicht begründet ist: Dafür gibt es eine große Zahl von Möglichkeiten, zwischen denen ohne nähere Untersuchung nicht entscheiden werden kann: Recht wahrscheinlich ist, dass die Wärmekapazität in der Dämmschicht am Ort des Sensors anders((nämlich etwas höher)) ist, als in der Simulation angesetzt: der Sensor selbst hat eine gewisse Wärmekapazität und er wurde zwischen zwei Dämmplatten mit Mörtel eingeklebt; wir wissen nicht, wieviel Mörtel das genau war - und der erkennbare Effekt ist auch so gering, dass durch die mangelnde Detailerhebung keine Aufsehens erregenden Abweichungen resultieren. Es kann aber auch sein, dass sich der Sensor effektiv einfach ein paar Millimeter weiter außen befindet als im Modell angesetzt: Änderungen der kapillar aufgenommenen Wärme könnten eine Rolle spielen oder auch kleine Wassermengen in Phasenübergängen. Was auch immer die Abweichung verursacht - der Effekt ist so klein, dass wir recht daran taten, das einfache thermische Modell zu verwenden, wie es ober beschrieben wurde. Die Diskussion hier zeigt dann, dass die Fourier-Gleichung die Wärmestrom- und Temperurentwicklung in diesem Aufbau auch in allen Details ziemlich genau widerspiegelt. Die Untersuchung bestätigt damit die Validität der in der Bauphysik eingeführten Gleichungen.\\ \\ 
 **Konsequenz:** Ein wichtiger Schluss aus dem gerade dargestellten Vergleich ist, dass das Computer-Simulationsmodell geeignet ist, z.B. die Werte für die Temperaturen genauso zuverlässig zu liefern, wie die Messungen. Das hat weitreichende praktische Konsequenzen: Z.B. können jetzt auch Temperaturen an anderen Stellen des Querschnittes, z.B. in 3⁄4-Position in der Dämmlage berechnet werden - dort gibt es keine Sensoren und dennoch können wir uns auf eine solche Berechnung verlassen. Auch die Temperaturen in in Zeiträumen, in denen die Messung ausgefallen war oder an anderen Orten mit anderem Temperaturverlauf z.B. der Außentemperatur können auf Grund dieser Validierung zuverlässig berechnet werden. Schließlich kann das Modell z.B. in eines mit nur noch 12 cm Dämmschichtdicke geändert werden und wir können erwarten, das es dann zuverlässig das veränderte Temperaturprofil berechnen lässt. Fast noch wichtiger: Mit dem bestehenden Modell können nicht nur die Temperaturen, sondern auch die inneren Energien der Bauteilschichten berechnet und die vorliegenden örtlichen Wärmströme bestimmt werden: Das erlaub wiederum eine weitaus genauere Berechnung des Wärmeverlustes durch diese Wand durch zeitliche Integration der Wärmeströme knapp unter der inneren Oberfläche. \\ \\  **Konsequenz:** Ein wichtiger Schluss aus dem gerade dargestellten Vergleich ist, dass das Computer-Simulationsmodell geeignet ist, z.B. die Werte für die Temperaturen genauso zuverlässig zu liefern, wie die Messungen. Das hat weitreichende praktische Konsequenzen: Z.B. können jetzt auch Temperaturen an anderen Stellen des Querschnittes, z.B. in 3⁄4-Position in der Dämmlage berechnet werden - dort gibt es keine Sensoren und dennoch können wir uns auf eine solche Berechnung verlassen. Auch die Temperaturen in in Zeiträumen, in denen die Messung ausgefallen war oder an anderen Orten mit anderem Temperaturverlauf z.B. der Außentemperatur können auf Grund dieser Validierung zuverlässig berechnet werden. Schließlich kann das Modell z.B. in eines mit nur noch 12 cm Dämmschichtdicke geändert werden und wir können erwarten, das es dann zuverlässig das veränderte Temperaturprofil berechnen lässt. Fast noch wichtiger: Mit dem bestehenden Modell können nicht nur die Temperaturen, sondern auch die inneren Energien der Bauteilschichten berechnet und die vorliegenden örtlichen Wärmströme bestimmt werden: Das erlaub wiederum eine weitaus genauere Berechnung des Wärmeverlustes durch diese Wand durch zeitliche Integration der Wärmeströme knapp unter der inneren Oberfläche. \\ \\ 
-**Anmerkung:** Dass wir den Vergleich Simulation/Messung hier als erstes aufführen, hat gute Gründe. Zum einen zeigt dies, wie gut die anerkannten Gesetze der Bauphysik in der Lage sind, die Realität zuverlässig abzubilden. Für die Planung von Neubauten oder Sanierungen sind wir ohnehin auf den Rechenweg angewiesen: Bevor das Gebäude gebaut oder die Maßnahme ausgeführt wurde, lässt sich das thermische Verhalten im konkreten Fall trivialerweise nicht nachmessen. Zuverlässige rechnerische Ansätze sind hier unverzichtbar. Aber auch für viel der im vorigen Abschnitt beschriebenen Anwendungen der Simulation bis hin zu einer korrekten Auswertung der Energiebilanzen ist ein validierter Rechengang nicht nur hilfreich, sondern oft unersetzlich: "Es gibt nichts Praktischeres als eine gute Theorie"(Immanuel Kant).\\ \\ +**Anmerkung:** Dass wir den Vergleich Simulation/Messung hier als erstes aufführen, hat gute Gründe. Zum einen zeigt dies, wie gut die anerkannten Gesetze der Bauphysik in der Lage sind, die Realität zuverlässig abzubilden. Für die Planung von Neubauten oder Sanierungen sind wir ohnehin auf den Rechenweg angewiesen: Bevor das Gebäude gebaut oder die Maßnahme ausgeführt wurde, lässt sich das thermische Verhalten im konkreten Fall trivialerweise nicht nachmessen. Zuverlässige rechnerische Ansätze sind hier unverzichtbar. Aber auch für viele der im vorigen Abschnitt beschriebenen Anwendungen der Simulation bis hin zu einer korrekten Auswertung der Energiebilanzen ist ein validierter Rechengang nicht nur hilfreich, sondern oft unersetzlich((Noch weiter: Wenn wir tatsächlich versuchen wollen, z.B. auch die Auswirkungen der Kapillarkondensation bei einem Modell für den Feuchtetransport zu analysieren, dann ist es unerlässlich, ein zuverlässiges thermisches Modell bereits als Basis zu verwenden. Denn, die Veränderungen durch die hier behandelten unmittelbaren thermischen Energieströme sind um Größenordnungen höher als die Effekte der Kondensationswärme; werden die thermischen Veränderungen nicht korrekt berücksichtigt, ist der Fehler bei der Analyse des Feuchtemodells u.U. sehr groß.)): "Es gibt nichts Praktischeres als eine gute Theorie"(Immanuel Kant). \\ \\ 
 =====(2) Vorgänge an der Außenoberfläche===== =====(2) Vorgänge an der Außenoberfläche=====
 Die Kurve mit dem blauen Quadrat ist die Temperaturentwicklung an der äußeren Oberfläche - also auf dem Außenputz. //Das erste//, was hier unmittelbar auffällt, sind die beiden //Temperaturspitzen// gegen 13:30 am 12. Oktober und 12:30 am Folgetag (Zeitangaben hier in UTC universal time, d.h. Sonnenzeit -2,5 h; es ist somit am 12. Oktober um ca. 16:00 örtliche Sonnenzeit). Die Erklärung ist hier unmittelbar einleuchtend: an diesen Tagen schien die Sonne und die Westwand bekam am Nachmittag ordentlich solare Einstrahlung ab. Es ist übrigens diese Absorption an Oberflächen, die letztlich auch zur Erwärmung der Außenluft im Verlauf des Tages führt (Grüne Kurve). Die an der Oberfläche aufgenommene Strahlungsenergie wird tatsächlich überwiegend von der Oberfläche, die nun merklich wärmer ist als die Außenluft, nach außen an die Luft und durch thermische Abstrahlung in den Himmel wieder abgegeben. Ein kleinerer Teil ist aber Wärmeverlust-reduzierend wirksam: Die Temperaturdifferenz zwischen innen und außen wird nämlich auf diesem Weg reduziert. Das wird sogar im Diagramm unmittelbar erkennbar: Auch die Temperatur weiter innen in der Dämmschicht steigt nämlich, zeitverzögert, an: mit einem Maximum von über 17 °C kurz nach 16:00 (UTC, am 12.10.). Soweit war das auch intuitiv 'einfach' und auch die Simulation trifft diese Vorgänge alle mit hoher Genauigkeit((Die Hintergründe behandeln wir im Grundlagenkurs Bauphysik etwas eingehender: [[grundlagen:sonne:indirekte_waermezufuhr|]])).\\ \\  Die Kurve mit dem blauen Quadrat ist die Temperaturentwicklung an der äußeren Oberfläche - also auf dem Außenputz. //Das erste//, was hier unmittelbar auffällt, sind die beiden //Temperaturspitzen// gegen 13:30 am 12. Oktober und 12:30 am Folgetag (Zeitangaben hier in UTC universal time, d.h. Sonnenzeit -2,5 h; es ist somit am 12. Oktober um ca. 16:00 örtliche Sonnenzeit). Die Erklärung ist hier unmittelbar einleuchtend: an diesen Tagen schien die Sonne und die Westwand bekam am Nachmittag ordentlich solare Einstrahlung ab. Es ist übrigens diese Absorption an Oberflächen, die letztlich auch zur Erwärmung der Außenluft im Verlauf des Tages führt (Grüne Kurve). Die an der Oberfläche aufgenommene Strahlungsenergie wird tatsächlich überwiegend von der Oberfläche, die nun merklich wärmer ist als die Außenluft, nach außen an die Luft und durch thermische Abstrahlung in den Himmel wieder abgegeben. Ein kleinerer Teil ist aber Wärmeverlust-reduzierend wirksam: Die Temperaturdifferenz zwischen innen und außen wird nämlich auf diesem Weg reduziert. Das wird sogar im Diagramm unmittelbar erkennbar: Auch die Temperatur weiter innen in der Dämmschicht steigt nämlich, zeitverzögert, an: mit einem Maximum von über 17 °C kurz nach 16:00 (UTC, am 12.10.). Soweit war das auch intuitiv 'einfach' und auch die Simulation trifft diese Vorgänge alle mit hoher Genauigkeit((Die Hintergründe behandeln wir im Grundlagenkurs Bauphysik etwas eingehender: [[grundlagen:sonne:indirekte_waermezufuhr|]])).\\ \\ 
-//Überraschend// ist aber auf den ersten Blick, dass zwischen 00:00 und 10:45 und auch wieder ab 16:00 UTC die Temperatur der Außenoberfläche (blau) **//niedriger//** ist als die Außenlufttemperatur! Kann das überhaupt sein oder sind das Messfehler? Das kann (und muss sogar) so sein, diese Abkühlung rührt von der Wärmstrahlungsbilanz der Oberfläche her: Nach den Wärmstrahlungsgesetzen strahlt sie Wärme ab, als Planck'scher Strahler gemäß ihrer Temperatur((und mit einem Emissionsvermögen von rund 93%)). Sie nimmt auch Wärmestrahlung auf, nämlich die, die von der Umgebung (ähnlich warm) und aus der Atmosphäre kommt - letztere kommt aber weit überwiegend aus höheren Schichten der Luft, insbesondere von CO<sub>2</sub>- und Wassermolekülen dort; dort sind die Temperaturen deutlich geringer und dementsprechend ergibt sich hierdurch ein Netto-Wärmestrahlungsverlust. Im Endeffekt wird die Oberfläche hier kälter als die Umgebungsluft, im Oktober bereits über die meiste Zeit des Tages. Dieser Verlust hält über lange Zeiträume an und in der Summe übersteigt er (an diesen Tagen, aber auch generell in der kalten Jahreszeit) die nur kurzzeitig auftretenden passive solaren Gewinne.\\ \\ +//Überraschend// ist aber auf den ersten Blick, dass zwischen 00:00 und 10:45 und auch wieder ab 16:00 UTC die Temperatur der Außenoberfläche (blau) **//niedriger//** ist als die Außenlufttemperatur! Kann das überhaupt sein oder sind das Messfehler? Das kann (und muss sogar) so sein, diese Abkühlung rührt von der Wärmestrahlungsbilanz der Oberfläche her: Nach den Wärmstrahlungsgesetzen strahlt sie Wärme ab, als Planck'scher Strahler gemäß ihrer Temperatur((und mit einem Emissionsvermögen von rund 93%)). Sie nimmt auch Wärmestrahlung auf, nämlich die, die von der Umgebung (ähnlich warm) und aus der Atmosphäre kommt - letztere kommt aber weit überwiegend aus höheren Schichten der Luft, insbesondere von CO<sub>2</sub>- und Wassermolekülen dort; dort sind die Temperaturen deutlich geringer und dementsprechend ergibt sich hierdurch ein Netto-Wärmestrahlungsverlust. Im Endeffekt wird die Oberfläche hier kälter als die Umgebungsluft, im Oktober bereits über die meiste Zeit des Tages. Dieser Verlust hält über lange Zeiträume an und in der Summe übersteigt er (an diesen Tagen, aber auch generell in der kalten Jahreszeit) die nur kurzzeitig auftretenden passive solaren Gewinne.\\ \\ 
 Auch das ist alles in ausgezeichneter Übereinstimmung mit der bauphysikalischen Theorie.\\ \\  Auch das ist alles in ausgezeichneter Übereinstimmung mit der bauphysikalischen Theorie.\\ \\ 
  
baulich/details_der_messung_der_wand-querschnitts-temperaturen.txt · Zuletzt geändert: 2024/05/06 11:50 von wfeist