grundlagen:energiewirtschaft_und_oekologie:growth_discussion
Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen RevisionVorhergehende Überarbeitung | |||
grundlagen:energiewirtschaft_und_oekologie:growth_discussion [2024/10/31 11:07] – [(3) Some math: The sum of the infinite geometric series converges!] yaling.hsiao@passiv.de | grundlagen:energiewirtschaft_und_oekologie:growth_discussion [2024/10/31 11:09] (aktuell) – [(2) The role of efficiency factors] yaling.hsiao@passiv.de | ||
---|---|---|---|
Zeile 29: | Zeile 29: | ||
//How good is “good enough”?// | //How good is “good enough”?// | ||
- | Here we are in for the next surprise: This is a purely mathematical question. If a task is currently completed with a system of useful life $t_N$ and the growth is $p$((factor $(1+p)$ in the service quantity; e.g. $p=$2.5% , then $1+p= $1.025 )), then the new lifespan of new systems of this type only now needs to last more than $(1+p)\cdot t_N - t_N = p \cdot t_N$ longer; let's say the new lifetime is $(1+\epsilon)$ times $t_N$, then $(1+\epsilon)$ is a typical efficiency factor. The fact that it can be " | + | Here we are in for the next surprise: This is a purely mathematical question. If a task is currently completed with a system of useful life $t_N$ and the growth is $p$((factor $(1+p)$ in the service quantity; e.g. $p=.5% , then +p= .025)) , then the new lifespan of new systems of this type only now needs to last more than $(1+p)%%\%%cdot t_N - t_N = p %%\%%cdot t_N$ longer; let's say the new lifetime is $(1+%%\%%epsilon)$ times $t_N$, then $(1+%%\%%epsilon)$ is a typical efficiency factor. The fact that it can be " |
$\; | $\; |
grundlagen/energiewirtschaft_und_oekologie/growth_discussion.1730369257.txt.gz · Zuletzt geändert: von yaling.hsiao@passiv.de